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ANIMAL TRACKS IN AN ORDOVICIAN ROCK OF 
NORTHWEST GEORGIA* 
A. T. ALLEN and J. G. LESTER 

Emory University 

Introduction: 

The occurrence of animal trails and tracks has been re­
ported in rocks of many ages but early paleozoic rocks are 
relatively free of such fossils. We believe that this is the first 
attempt to describe fossil spoor of early paleozoic time in 
Georgia . 

. The trails are found on the east side of Rabbit Valley about 
two miles north of Ringgold, Georgia (fig. 1) where they 
have been preserved in a green chert of Upper Middle Ordo­
vician age. The chert exposure is slab-like, dipping 15 ° east 
and striking 20° northeast, and on the upper surface the 
trails are plainly seen. 

Weathering of the chert has not affected the legibility of 
the tracks nor is it believed that it has destroyed any of the 
essential characteristics of them. Water flowing in the grooves 
may have modified the finer details of the bottom and sides 
of the grooves. 

Description of trails and tracks: 

The fossil spoor can be divided into three categories: 

1. Fairly straight grooves %" wide x Vs" to 3/16" deep 
and bordered on each side by a small ridge about Vs" high. 
The trails are often arcuate and in some cases loop back 
over themselves. 

2. Regular grooves about%," wide x Vs" to ~"deep, bor­
dered on each side by a ridge ± ~~~ high. These are almost 
twice the size of the smaller grooves and at first glance give 
the impression of being two parallel small grooves but careful 
examination shows them to be distinctly different from the 
smaller ones. 

It is possible, of course, that No. 2 was made by a larger 

*Read before Earth Science Section, Georgia Academy of Science, Mercer 
University, Macon, April 24, 1953. 
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Fig. 1. Multitude of trails on exposed slab of chert. 
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organism than No. 1 but belonging to the same family. 

3. This is a true track in that foot marks or appendage 
marks are plainly preserved. They are straighter in direction 
than the grooves and show less tendency to turn from a 
straight line. 

The width of the track is about 1 Y2" outside to outside. A 
slight depression ¥2" wide x 1/32" deep forms the middle 
part. Separated from it by 1,4"- 5/16" are parallel lines of 
crescentic impressions, one line on each side. The small cres­
cents average 1;4" in diameter and are about lj2"- 9/16" 
apart. The crescents on one side are very slightly staggered 
with respect to those on the other side. 

The spacing of the crescents is uniform and their depth 
shows no appreciable variation. As the animal moved its legs 
backward in order to propel itself in a forward direction the 
feet piled up the ooze into asymmetrical mounds with the 
steeper side next to the foot and therefore pointing the direc­
tion of movement. 

Origin o.f Green Chert: 

The bed in which the fossil tracks are preserved is com­
monly referred to as the "Green Chert Layer" because it is 
a persistent marker in the Mohawkian limestones of north­
west Georgia. In recent stratigraphic work this zone has been 
labeled Zone 18. 

The chert in many places preserves casts of brachiopods 
and gastropods which are typical of the fauna above and 
below this zone. Since the organisms obviously had cal­
careous skeletons, which have been replaced in situ by silica, 
the chert is considered to be of secondary origin. Immediately 
above the chert is a layer of bentonite which correlates with 
zone B-3 of Fox and Grant (1944) and zone T-3 of Wilson 
(1949). It is thought that silica has been leached from the 
bentonite by downward percolating ground waters and has 
replaced the underlying limestone, at the same time preserv­
ing the structures and organic remains found in this zone. 
The layer is about 6 inches thick and grades into unaltered 
limestone at the base. 
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Fig. 2. Trails showing appendage impressions. 
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Possible origin of trails and tracks: 

Hall (1887) described briefly some grooves similar to Num­
bers 1 and 2 and decided they were made by a mollusk; 
Vokes (1941) classed such grooves as being the trail of a 
gastropod. We believe that these are trails of a gastropod 
made in a limy ooze in not too shallow water for the follow­
ing reasons : 

1. The uniformity of tlie grooves and ridges indicate a 
very soft substance upon ~hich the animal travelled and into 
which he sank slightly. 

2. The animal or animals making trails illustrated in 
figure 1 possessed a relatively soft organ of locomotion, 
located beneath the center of gravity of the body and moved 
by muscular expansion and contraction in a gentle, flowing­
like motion. This type of movement would produce just such 
an uninterrupted trail. 

3. It obviously was some animal living during Ordovician 
time in the area or came into the area for feeding purposes 
or was migrating. 

4. The absence of tentacle markings and operculum im­
prints is due to either weathering or to the silicification proc­
ess which changed the limy material into chert. 

5. The bulk of the animal making trails Number 2 would 
not necessarily be greater than that of such forms as Maclur­
ites sp., which inhabited Ordovician seas. 

6. The trail made by a modern water snail in red clay 
submerged beneath 6" of water resembles very closely the 
fossil trails of Rabbit Valley (figure 3). 

Because the grooves described above were made by or­
ganisms which evidently had no locomotor appendages, a 
search was begun to find ~an invertebrate which might be 
capable of leaving such spoor. In order to reproduce the 
conditions existing in nature as nearly as possible, a pan was 
filled with about 3 inches of water in which red clay was 
allowed to settle to a depth of an inch. Since the clay was 
saturated with water, it was soft enough to allow an organ­
ism to sink into it, yet firm enough to preserve any prints 
which might be made. Into the container was placed an ordi-
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Fig. 3. Trail of modern water snail made in soft ooze. 
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nary water snail. The results are listed below and can be 
seen in figure 3. 

1. Trail-like impressions left with faint tentacle markings 
along the sides. 

2. An operculid-form snail leaves slight indentations with­
in the groove because of the operculum. 

3. The width of the trail is the same width as the diameter 
of the shell. 

4. Trail may be widened locally by the turning from side 
to side of the snail or the reversal of direction. 

A slime of marble dust was also used but the results were 
unsatisfactory. 

Moore's Historical Geology (1933a) shows a picture after 
C. D. Walcott (1910) of trilobite tracks in the Upper Cam­
brian sandstones of New York which are very similar to 
track Number 3 in Rabbit Valley and approximately the 
same size. Ringueberg (1887) describes a trilobite track as, 
"In the form of a regular succeeding series of ten paired 
divergent indentations arranged in two diverging rows with 
the tail trail showing intermittently between". 

In the tracks in Rabbit Valley, each individual appendage 
impression is so developed as to indicate the direction of 
movement. Gaps in the trail may be the result of a leaping 
motion or jumping. The persistence of the tail or body track 
between the appendage impressions seems to indicate that 
the animal was not able to support its weight by its legs and 
was a bottom crawler. 

The shallowness of the impressions would indicate a rela­
tively lightweight organism. Not as great, perhaps, as the 
gastropod which formed trail Number 2. 

This track is thought to have been made by a form posses­
sing strong, prominent, evenly-spaced appendages which 
were arranged in such a manner that the spacing between 
the individual appendages was essentially equal to the for­
ward movement made at each step or the appendages were 

· few in number. The tracks are so uniform in their spacing 
and so well-defined that such must have been the case or 
otherwise each succeeding appendage, where there were 
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Fig 4. Cast of underside of a trilobite (Triarthis becki). 
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Fig. 5. Cast of eurypterid (Hughmilleria) showing ap­
pendages. 
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many of them, must have. been placed in the print made by 
the ones in the forefront; this is hardly to be expected. 

No fossil of the organism making the track has been found 
but Fig. 5 shows an eurypterid of Silurian age (Hughmilleria) 
which possesses paired appendages, body width and a bulk 
which could readily be responsible for such tracks. An ap­
pendage spread of 1¥2" to 214,", width of body of 1" and a 
smooth ventral surface on the body and tail. 

We believe the track Number 3 to be the trails of a form 
of eurypterid or a form similar to it. 

According to Moore (1933b) the eurypterids are marine 
forms, mostly mud crawlers, though some were excellent 
swimmers. 

Six genera and 16 species have been reported from the 
Ordovician, but so far as we know, no fossil eurypterids have 
been reported from the Ordovician of Georgia. 

No attempt was made to reproduce such tracks by experi­
menting with living animals. 
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